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Fluid pipes
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We present the results of a combined theoretical and experimental investigation of
laminar vertical jets impinging on a deep fluid reservoir. We consider the parameter
regime where, in a pure water system, the jet is characterized by a stationary field
of capillary waves at its base. When the reservoir is contaminated by surfactant, the
base of the jet is void of capillary waves, cylindrical and quiescent: water enters the
reservoir as if through a rigid pipe. A theoretical description of the resulting fluid
pipe is deduced by matching extensional plug flow upstream of the pipe onto entry
pipe flow within it. Theoretical predictions for the pipe height are found to be in
excellent accord with our experimental results. An analogous theoretical description
of the planar fluid pipe expected to arise on a falling fluid sheet is presented.

1. Introduction
The flow of interest may be readily observed in a kitchen sink. When the volume flux

exiting the tap is such that the falling stream has a diameter of 2–3 mm, obstructing
the stream with a finger at a distance of several centimetres from the tap gives rise
to a stationary field of varicose capillary waves upstream of the finger. If the finger
is dipped in liquid detergent before insertion into the stream, the capillary waves
begin at some critical distance above the finger, below which the stream is cylindrical.
Closer inspection reveals that the surface of the jet’s cylindrical base is quiescent. We
here develop a description of the dynamics responsible for this curious phenomenon.

The dynamics of laminar fluid jets have been studied extensively (Marshall &
Pigford 1947; Scriven & Pigford 1959; Duda & Vrentas 1967; Brun & Lienhard
1968; Lienhard 1968; Clarke 1968, 1969; Kaye & Vale 1969; Petrie 1979; Adachi
1987; González-Mendizabal, Olivera-Fuentes & Guzmán 1987) and the propagation
of capillary waves on jets has become a textbook example (Drazin & Reid 1981;
Bird, Armstrong & Hassager 1987). Rayleigh (1879, 1892) examined the stability of
a cylindrical fluid jet in the absence of gravity, and demonstrated that axisymmetric
varicose perturbations with wavelength λ greater than the jet circumference 2πa grow
exponentially and lead to jet breakup, while those with λ < 2πa are neutrally stable
and propagate along the jet. Anno (1977) extended Rayleigh’s theory to describe
capillary waves on free-falling vertical jets, and demonstrated that a stationary field
of neutrally stable varicose capillary waves exists on the jet when the phase speed
matches the local jet speed. While the influence of fluid viscosity on the shape of such
water jets is negligible, viscous damping has a significant impact on the neutrally stable
waves (Awati & Howes 1996); specifically, the wave amplitude decreases exponentially
with distance from the disturbance source.
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(a) (b)

Figure 1. Water jets impinging on a pure water reservoir when (a) Q = 3.2 cm3 s−1,
(b) Q = 4.6 cm3 s−1. The grid on the right is millimetric.

When an axisymmetric fluid jet impinges on a deep reservoir of the same fluid,
a stationary field of varicose capillary waves is excited by the impact and may be
observed near the base of the jet (figure 1). When the reservoir is contaminated by
surfactant, so that its surface tension is less than that of the impinging jet, the flow
structure is dramatically altered (figure 2). First, the varicose capillary waves are
suppressed at the base of the jet, but resume at some distance above the reservoir.
Second, the region of the jet surface that is void of capillary waves is entirely quiescent.
The jet enters the reservoir as if through a rigid pipe, henceforth referred to as the
‘fluid pipe’. Fluid pipes were first reported in an experimental study of gas absorption
by liquid jets impinging on a fluid reservoir (Cullen & Davidson 1957); however, a
consistent theoretical description of the fluid pipe has yet to be presented.

In § 2, we present a physical picture of the fluid pipe, and a simple scaling result for
its vertical extent. Our experimental procedure is outlined in § 3. In § 4, we review the
dynamics of falling jets and the field of capillary waves which they may support. In
§ 5, we develop a detailed theoretical description of the fluid pipe. Our model yields
a prediction for the pipe height which is tested experimentally.

2. Physical picture
We consider the system illustrated in figure 3. A laminar vertical water jet of viscos-

ity ν, density ρ and surface tension σ0 is generated by releasing a volume flux Q from
an outlet of radius aN . The characteristic Reynolds number Q/(aNν) is large. The jet
evolves under the influence of gravitational acceleration gẑ (ẑ is the unit vector point-
ing downward) and impinges on a deep surfactant-laden reservoir characterized by a
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(a) (b)

Figure 2. Stagnant fluid pipes at the base of water jets impinging on a reservoir contaminated
with Ivory dish detergent when (a) Q = 3.2 cm3 s−1 and (b) Q = 2.6 cm3 s−1. Capillary waves are
suppressed on the fluid pipe, but resume above it.

surface tension σ1 < σ0. The concomitant surface-tension gradient draws surfactant
up the jet until a balance is established between viscous and Marangoni stresses at the
jet surface. Surfactants generally impart an effective elasticity to an interface (Levich
1962) and so serve to suppress capillary waves (Lucassen-Reynders & Lucassen 1969;
Hansen & Ahmad 1971). Consequently, capillary waves are suppressed on the pipe
but resume above it. The extensional surface motions associated with the plug flow
are also suppressed by the vertical Marangoni stress, giving rise to a stagnant surface
at the base of the jet, a fluid pipe of radius a and height H . In our detailed theoretical
description of § 5, we model the flow in the fluid pipe by matching the extensional
plug flow above the pipe onto entry pipe flow within it.

In laminar entry pipe flow, a boundary layer of thickness δ(z) grows along the
sides of the pipe throughout the ‘inlet region’, until its thickness becomes comparable
to the pipe radius. Mohanty & Asthana (1978) calculate the streamwise extent
of the inlet region as LF ∼ 0.072 aRe, where Re = aV/ν is the Reynolds number
based on the entry speed V and the pipe radius a. In our experiments, a ∼ 0.1 cm,
V ∼ (30–100) cm s−1, and ν = 0.01 cm2 s−1; hence, Re ∼ 300 and LF ∼ (2–7) cm. Since
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Figure 3. A schematic illustration of the flow of interest, which may be described in terms of three
distinct regions: (a) adjustment flow (−zN < z < −z0); (b) extensional plug flow (−z0 < z < 0);
and (c) the fluid pipe (0 < z < H).

the maximum height H of the fluid pipes observed in our experiments was 2 cm, the
flow within the fluid pipe may be adequately described as that within the inlet region
of entry pipe flow.

We proceed by deducing a simple scaling which indicates the dependence of the
fluid pipe height H on the governing system parameters. Balancing viscous and
Marangoni stresses on the pipe surface yields

ρν
V

δH
∼ ∆σ

H
, (2.1)

where ∆σ = σ0 − σ1 and δH is the boundary layer thickness at the base of the fluid
pipe. We assume that the boundary layer thickness increases with distance z from the
inlet according to

δ

a
∼
( νz

a2V

)1/2

=
( z

aRe

)1/2

(2.2)

(Schlichting 1987). Substituting (2.2) into (2.1) yields

H

a
∼ 1

Re

(∆σ)2

(ρνV )2
=

Re

W 2
d

, (2.3)

where Wd = ρaV 2/∆σ is the dynamic Weber number. In dimensional form, we thus
obtain

H ∼ (∆σ)2

ρµV 3
=

(∆σ)2π3a6

ρµQ3
. (2.4)

The pipe height increases with the surface tension differential and pipe radius, and
decreases with fluid viscosity and volume flux. A complete theoretical description of
the fluid pipe, which requires consideration of the combined influence of gravity and
the free pipe surface on the boundary layer dynamics, is presented in § 5.
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Figure 4. A schematic illustration of the experimental apparatus. The nozzle specifications
(LN = 3.0 cm, HN = 0.50 cm, aN = 0.15 cm, θ = 6.7◦) were chosen to minimize the extent of
the adjustment region.

3. Experimental method
The experimental apparatus is illustrated in figure 4. Distilled water is gravity-

fed from a tank and discharges from a nozzle of radius aN into a reservoir. The
flow rate Q is measured using a rotameter in series with the flow. The reservoir is
mounted on an adjustable platform which allows the distance between the reservoir
and nozzle to be varied. The reservoir has an adjustable drain, which makes it possible
to keep the water level constant, and so prevent the overflow of surfactant. Images
of the jet were taken with a digital camera, then loaded into Matlab, where the jet
profile, capillary wavelengths and fluid pipe height could be measured using Matlab’s
Image Processing Toolbox. A millimetric grid placed in the plane of the jet allowed
calibration of distances in the digital images.

Measurements of the capillary wave field were made at the base of jets impinging
on a distilled water reservoir. Fluid pipes were generated by adding one of a variety of
surfactants (including Tide, Ivory, sodium dodecyl sulphate (SDS) and a superwetting
agent) to the reservoir in sufficient quantities to saturate the horizontal surface and so
minimize its surface tension. The fluid pipe experiments were performed with layers
sufficiently deep (1–2 cm) that the pipe structure was independent of layer depth.
Typical flow rates were 2 to 5 cm3 s−1, and nozzle-to-reservoir distances 1 to 6 cm.
Measurements of the surface tensions of the jet and reservoir were made using a
Kruss K10 surface tensiometer, which has an accuracy of 0.1%. The surface tensions
in our experiments ranged from 26 to 72 dyn cm−1. The surface tension of the source
fluid, σ0, varied between 68 and 72 dyn cm−1, with a mean value of 70.5 dyn cm−1.
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Figure 5. A typical profile of a water jet impinging on a reservoir contaminated with Ivory detergent.
The radius of the fluid pipe is constant within the experimental error indicated by the radii of the
circles. Capillary waves are evident above the pipe, while an underlying bulbous region joins the jet
to the reservoir. Here a = 0.11 cm and Q = 2.55 cm3 s−1.

This range indicates the degree of contamination of the source fluid by contact with
the teflon tubing and flow meter. Finally, the surface tension differential ∆σ took
mean values of 26.3 and 31.1 dyn cm−1 for reservoirs saturated with Ivory and Tide
detergents, respectively.

Figure 2 makes clear that the top of the fluid pipe is well-defined, while its base is
marked by a bulbous region where the jet matches onto the reservoir. A characteristic
pipe profile is illustrated in figure 5, where three distinct regions are apparent: the fluid
pipe, the overlying capillary waves, and the underlying bulbous region. The radius
of the fluid pipe was found to be constant within experimental error (approximately
1%). For both clean and contaminated reservoirs, the vertical extent of the bulbous
region was found to decrease with flow rate in a manner expected for capillary waves;
however, it was typically two to three times larger than the wavelength expected for
capillary waves on a jet with surface tension corresponding to that of the reservoir, and
was presumably influenced by the complex flow at the pipe’s base. In the experimental
measurements reported in § 5, the pipe base was taken to be the middle of the bulbous
region; the errors in pipe height correspond to the half-height of the bulbous region.

The absence or presence of surface motions on the fluid pipe was made clear by
sprinkling lycopodium powder onto the surface of the reservoir prior to initiation
of the jet. When the jet was initiated, the powder was drawn up the pipe until an
equilibrium state was achieved. A strictly quiescent pipe surface was observed only
for surfactants containing a ‘sparingly soluble’ (that is, nearly insoluble) component
(Porter 1994), specifically the commercial detergents Tide and Ivory. For the soluble
surfactants examined, including SDS, the pipe surface was marked by weak circulation
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patterns. Similarly, when the surface tension of the reservoir was reduced by the
addition of alcohol (either ethanol or methanol), an unsteady pipe-like structure was
observed. In our theoretical developments, we restrict our attention to the case of
stationary fluid pipes.

4. Base flow
Our theoretical description of the fluid pipe requires that we match the extensional

plug flow above the pipe onto entry plug flow within it. We thus proceed by describing
the extensional plug flow, referred to as the base flow, as well as the field of capillary
waves which it supports.

The base flow consists of a steady, laminar, axisymmetric jet falling from a reference
level z = −z0 (figure 3). We assume that the jet is in free-fall and has a plug profile
u = U(z) ẑ to leading order. The jet has an axial length scale L ∼ 1 cm, a radial
scale a0 ∼ 0.1 cm, and characteristic speed U ∼ 30 cm s−1. Since the corresponding
Reynolds number is large, the flow may be adequately described as inviscid to leading
order.

Since the flow is steady, the volume flux Q across any cross-section is constant:

Q = 2π

∫ a

0

Ur dr = πa2U = πa2
0U0, (4.1)

where a = a(z) is the radius of the jet, and U0 is the axial speed at the reference level
z = −z0 where a = a0. Since the flow is effectively inviscid and has a plug profile,
Bernoulli’s Principle may be applied to yield

U2

2
+

σ

ρa
− gz =

U2
0

2
+

σ

ρa0

+ gz0 (4.2)

(e.g. Cullen & Davidson 1957). Note that the jet radius is assumed to be slowly
varying in z so that the relevant pressure jump across the interface is σ∇ · n = σ/a(z)
to leading order. Rearranging (4.2) yields

U

U0

=

√
1 +Π − 2

W0

(a0

a
− 1
)
, (4.3)

where Π = 2g(z + z0)/U
2
0 is an inverse Froude number and W0 = ρa0U

2
0/σ0 is the

Weber number. Combining (4.1) and (4.3) yields

a

a0

=

(
1 +Π − 2

W0

(a0

a
− 1
))−1/4

. (4.4)

In the zero surface tension limit, (4.3) and (4.4) become

U

U0

=
√

1 +Π,
a

a0

= (1 +Π)−1/4. (4.5)

The close agreement between the predicted radial profiles (4.4) and (4.5) at sufficient
distance from the nozzle is evident in figure 6, and suggests that (4.5) is sufficient to
describe the jet profile in the region of interest.

The influence of the rigid nozzle walls on the jet profile (see Brun & Lienhard
1968; McCarthy & Malloy 1974; González-Mendizabal et al. 1987; and references
therein) extends a distance LA from the source at z = −zN . In order for the jet profiles
to be adequately described by the inviscid theory, the reference level z = −z0 must
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Figure 6. The form of a water jet with Q = 1.86 cm3 s−1, a0 = 0.110 cm, W0 = ρa0U
2
0/σ0 = 3.71, and

nozzle to reservoir distance of 2.7 cm. (a) The observed dependence (◦) of dimensionless jet radius
a/a0 on dimensionless height Π = 2g(z + z0)/U2

0 . The theoretical jet profiles deduced by including
((4.4); dash-dot line) and neglecting ((4.5); dashed line) the influence of surface tension are also
shown. (b) The observed dependence (∗) of dimensionless capillary wavelength λ/a0 on height. The
theoretical prediction for this dependence (A 5) appears as a solid line. Characteristic error bars are
shown.

be chosen below the adjustment region; zN − z0 > LA. The only way to determine
precisely the extent of the adjustment region is to measure velocity profiles within
the jet; in the absence of such measurements, we were obliged to rely on previous
predictions for the adjustment length. Brun & Lienhard 1968 estimate that for a
cylindrical nozzle, LA/a = 0.1Re; however, it has also been shown that tapering the
nozzle substantially reduces the extent of the adjustment length LA (Brun & Lienhard
1968; McCarthy & Malloy 1974). Consequently, the nozzle used in our experiments
was tapered near its exit in a manner detailed in figure 4.

Duda & Vrentas (1967) developed a theoretical model describing a vertical laminar
liquid jet issuing from a cylindrical nozzle for the case where the initial jet profile
is parabolic. The experimental results of González-Mendizabal et al. (1987) were
consistent with Duda & Vrentas’ theory, but also made clear that the inviscid model
(4.4) provides an excellent description of the jet profile at sufficient distance from the
nozzle exit region. Radial profile data from one of our experiments are presented in
figure 6, and are well-described by (4.4) and (4.5) at sufficient distance from the source,
specifically, beyond 4 to 7 nozzle radii. This length was typical in the parameter regime
examined, and taken to be the adjustment length LA in our experimental study. The
scatter in the jet profile data evident at the base of the jet results from the distortion
of the jet by capillary waves. A comprehensive data set for jet profiles in the absence
of capillary waves is presented in González-Mendizabal et al. (1987).

The theory of capillary waves on falling jets is well-developed (Anno 1977), and is
reviewed for the sake of completeness in Appendix A. The predicted dependence of
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capillary wavelength λ on the governing parameters is given in (A 5). As there appears
to be a scarcity of supporting experimental data, we undertook an experimental test
of the capillary wave theory. Figure 6(b) shows the results of a typical experiment in
which capillary wavelengths are plotted as a function of height. The error bars reflect
the uncertainties introduced by the light scattered from the wave field. The data
indicate that the simple linear theory provides a reasonable description of the data.
The observed discrepancy probably results from the influence of nonlinear effects on
the wave field. A more extensive data set indicating the observed dependence of λ on
Π and W0 is presented in Appendix A.

5. Fluid pipe
We proceed by deriving an approximate solution to the flow in the fluid pipe by

adapting established models of entry flow into a rigid pipe. Our solution elucidates the
dependence of the pipe height and the surface tension distribution on the governing
parameters.

5.1. Entry pipe flow

Consider the flow at the entrance of a rigid pipe. We assume that across the mouth
of the pipe (z = 0), the jet has uniform speed V . As the flow proceeds into the pipe,
a viscous boundary layer of width δ(z) develops along the pipe wall. Outside the
boundary layer (0 6 r 6 a − δ), the flow has an approximately flat profile u(r, z) ≈
U(z). The flow inside the boundary layer evolves according to the continuity equation
and the boundary layer approximation of the z-momentum equation, respectively,

∂u

∂z
+

1

r

∂

∂r
(rv) = 0, (5.1)

u
∂u

∂z
+ v

∂u

∂r
= −1

ρ

dp

dz
+
ν

r

∂

∂r

(
r
∂u

∂r

)
, (5.2)

where p is the fluid pressure. According to the boundary layer approximation, dp/dr ≈
0; hence, p = p(z). The volume flux through any pipe cross-section is constant,

Q = 2π

∫ a

0

ur dr = πa2V , (5.3)

and the flow vanishes on the pipe walls

u = v = 0, r = a. (5.4)

Equations (5.1)–(5.4) can be integrated to yield the momentum and energy integral
equations (Campbell & Slattery 1963):

ρ
d

dz

∫ a

0

u2r dr +
a2

2

dp

dz
− aµ ∂u

∂r

∣∣∣∣
r=a

= 0, (5.5)

dp

dz

a2V

2
+
ρ

2

d

dz

∫ a

0

u3r dr + µ

∫ a

0

(
∂u

∂r

)2

r dr = 0. (5.6)

Eliminating dp/dz from (5.5) and (5.6) gives

1

2

d

dz

∫ a

0

u3r dr + ν

∫ a

0

(
∂u

∂r

)2

r dr = V
d

dz

∫ a

0

u2r dr − aνV ∂u

∂r

∣∣∣∣
r=a

. (5.7)
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Henceforth, we redefine the dimensional variables z, r, u and p as z′, r′, u′ and p′,
respectively, and define the dimensionless variables

s =
δ

a
, z =

z′

H
, r =

r′

a
, u =

u′

V
. (5.8)

Equations (5.3) and (5.7) then assume the dimensionless form∫ 1

0

ur dr = 1
2
, (5.9)

aRe

H

ds

dz

d

ds

(
1

2

∫ 1

0

u3r dr −
∫ 1

0

u2r dr

)
= −

∫ 1

0

(
∂u

∂r

)2

r dr − ∂u

∂r

∣∣∣∣
r=1

. (5.10)

5.2. Flow in a fluid pipe

Consider a vertical axisymmetric water jet falling under the influence of gravity with an
upward surface stress applied at the jet surface (figure 3). Guided by our experimental
observations, we assume that the fluid pipe is characterized by a constant radius a
and a vanishing surface velocity. As in simple entry pipe flow, a viscous boundary
layer of width δ separates the jet surface from an inviscid core region; δ increases
with distance downstream, but does not entirely span the fluid pipe before the jet
impinges on the reservoir.

The flow in a vertical axisymmetric fluid pipe is governed by the same equations
(5.1)–(5.4) relevant for entry pipe flow provided the fluid pressure p′ is replaced by
the dynamic pressure p′d:

p′d = p′ − ρgz′. (5.11)

Furthermore, normal and tangential stress boundary conditions must be satisfied on
the fluid pipe surface. On the cylindrical pipe surface of radius a, when Re� 1 these
assume the simple form

p′(z′) = pa +
σ′(z′)
a

, (5.12)

µ
∂u′

∂r′

∣∣∣∣
r′=a

=
dσ′

dz′
, (5.13)

where pa is ambient pressure and σ′ the surface tension.
Setting r′ = a in the momentum equation (5.2) and using (5.11)–(5.13) yields[

1

a

∂u′

∂r′
+
∂2u′

∂r′2

]
r′=a

=
1

µ

dp′d
dz′

=
1

a

∂u′

∂r′

∣∣∣∣
r′=a
− g

ν
. (5.14)

Simplification yields a single boundary condition for u′:

∂2u′

∂r′2

∣∣∣∣
r′=a

= −g
ν
. (5.15)

In the dimensionless variables defined in (5.8), (5.15) becomes

∂2u

∂r2

∣∣∣∣
r=1

= −S−1, (5.16)

where the Stokes number,S = νV/(ga2), prescribes the relative importance of viscous
and gravitational forces. The free-surface boundary condition (5.16) underlines the
difference between flow in a fluid pipe and simple entry pipe flow.
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5.3. Approximate solution

Van Dyke (1970) and Fargie & Martin (1971) list and review the four principle
theoretical approaches to the classical problem of entry pipe flow in the absence of
gravity: finite-difference numerical solution (e.g. Langhaar 1942; Friedmann, Gillis
& Liron 1968); approximate solution through linearization of inertial terms (e.g.
Sparrow, Lin & Lundgren 1964); perturbation series expansions (e.g. Boussinesq
1891; Goldstein 1938); and the Kármán–Polhausen integral methods (e.g. Schiller
1922; Campbell & Slattery 1963). Of these four approaches, the latter is the most
simply adapted to the problem of interest, in which the complicating influence of
gravity and the free surface on the boundary layer dynamics must be considered
explicitly.

In the Kármán–Polhausen models, entry pipe flow is described as an inviscid core
plug flow being encroached upon by a developing laminar boundary layer with a
polynomial velocity profile. The polynomial profile satisfies a chosen set of integral
equations derived from the continuity and momentum equations. For the entry
pipe flow problem, different authors (e.g. Campbell & Slattery 1963; Fargie & Martin
1971; Gupta 1977; Mohanty & Asthana 1978) have used different polynomial profiles,
imposed different integral conditions, and deduced slightly different solutions. When
the various approaches were applied to our problem, we found that remarkably
similar results were obtained. As the results of Campbell & Slattery (1963) have
been extensively benchmarked against the asymptotic theories of Boussinesq (1891)
and Goldstein (1938), Langhaar’s (1942) approximate solution via linearization of
inertial terms, the Kármán-Polhausen solution of Schiller (1922), and a great deal of
experimental data, we here adapt their formulation to the problem of interest.

In dimensionless variables, the flow profile is approximated as

u(r, z) =


U(z), 0 6 r < 1− s,
U(z)

5∑
n=0

An(z)η
n, 1− s 6 r 6 1,

(5.17)

where η = (1− r)/s is the dimensionless boundary layer variable and U(z) represents
the plug flow speed in the inviscid core. The coefficients An(z), the dimensionless
boundary layer thickness s(z) and the outer flow U(z) are determined by imposing
the integral relation (5.10), the boundary conditions (5.4) and (5.16), the volume flux
condition (5.9), and by forcing u to match the outer flow profile U(z) smoothly.
Specifically, we require that u = U and dnu/drn = 0 for n = 1, 2, 3 at r = 1 − s in
order to ensure the consistency of our solution over the parameter regime examined
experimentally. Straightforward algebra yields the boundary layer profile

u = U(z)η

(
2− η + (1− η)2 + (1− η)3 −

(
3

2
− s2

8SU(z)

)
(1− η)4

)
, (5.18)

where the core velocity is given by

U(z) =
840−S−1s3(7− 2s)

20(42− 21s+ 4s2)
. (5.19)

The evolution of the dimensionless boundary layer thickness s(z) is prescribed by

H

aRe

dz

ds
=
sF(s,S)

G(s,S)

420−S−1s2(s2 − 7s+ 21)

(4s2 − 21s+ 42)2
, (5.20)

where F(s,S) and G(s,S) are listed in Appendix B.
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We assume the surface tension at the top of the fluid pipe is that of the incoming
water, σ′(0) = σ0, while the surface tension at the bottom of the fluid pipe, z′ = H ,
is that of the reservoir, σ′(H) = σ1. We define the dimensionless surface tension
as σ = σ′/σ0. The tangential stress boundary condition (5.13) yields an equation
governing σ(z),

aRe

H

dσ

dz
= −W0

420 +S−1s2(21− 14s+ 3s2)

4s(4s2 − 21s+ 42)
, (5.21)

where W0 = ρaV 2/σ0. Combining (5.20) and (5.21) yields the variation of surface
tension with boundary layer thickness:

dσ

ds
= −W0

F(s,S)

G(s,S)

(420 +S−1s2(21− 14s+ 3s2))(420−S−1s2(s2 − 7s+ 21))

4(4s2 − 21s+ 42)3
. (5.22)

From (5.20) and (5.22), the evolution of s(z) and σ(z) from their initial values, s = 0
and σ = 1 at z = 0, may thus be traced. The profiles so obtained of s(z), U(z) and
σ(z) are plotted in figure 7. While s(z) and U(z) vary noticeably with S, σ(z) is
virtually independent of S. Finally, we note that if the equation of state relating
surface tension σ to surfactant concentration is known, the distribution of surfactant
along the fluid pipe may also be determined.

A useful check of our theory is to calculate the limiting behaviour of U(z), s(z) and
σ(z) near the top of the pipe, where (z, s) � 1. In this limit, (5.19), (5.20) and (5.22)
become, respectively,

U = 1 +
s

2
,

H

aRe

dz

ds
= 0.0294 s,

dσ

ds
= −0.0734W0, (5.23)

where numerical coefficients have been rounded to three significant digits. Integrating
the last two equations, applying the boundary conditions at z = 0, and manipulat-
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ing yields

U(z) = 1 + 4.13

√
Hz

aRe
, s(z) = 8.25

√
Hz

aRe
, σ(z) = 1− 0.606W0

√
Hz

aRe
. (5.24)

The model captures the well-known dependence of U and s on
√
z that arises in the

Blasius profile (Schlichting 1987).

5.4. Pipe height

Integrating (5.20) and (5.22) and applying the boundary conditions gives

H

aRe
=

∫ s1

0

sF(s,S)

G(s,S)

420−S−1s2(s2 − 7s+ 21)

(4s2 − 21s+ 42)2
ds, (5.25)

1

Wd

=

∫ s1

0

F(s,S)

G(s,S)

(420 +S−1s2(21− 14s+ 3s2))(420−S−1s2(s2 − 7s+ 21))

4(4s2 − 21s+ 42)3
ds,

(5.26)

where s1 is the scaled boundary layer thickness at the base of the pipe. Given S
and Wd, the scaled fluid pipe height H/(aRe) is found by first solving (5.26) for s1,
and then (5.25) for H/(aRe). The height of the fluid pipe H/(aRe) thus depends
exclusively on two dimensionless parameters: Wd and S.

Theoretical predictions for the pipe height based on (5.25) and (5.26) are presented
in figure 8 along with our experimental data. We note that H/(aRe) depends only
weakly on S in the parameter regime of interest. In our experiments, S varied
between 0.04 and 0.1; the corresponding theoretical curves indicating the dependence
of pipe height on Wd are virtually indistinguishable. Consequently, we plot the curve
for the mean experimental value S = 0.062. The data are well-described by our
theoretical predictions over the full range of parameters explored.

5.5. Asymptotic forms

We proceed by deriving the asymptotic forms of (5.25) and (5.26) in the limit of
ε ≡√H/(aRe)� 1, and so deduce simple algebraic expressions for H(Wd,S). We
note that in our experiments, ε lies in the range 0.03–0.13 (see figure 8). We introduce
the scaled quantities

Ŝ =
S
ε
, ŝ =

s

ε
, Ŵd = εWd. (5.27)

In the parameter regime considered experimentally, Ŝ ranges from 0.25 to 2.5; more-
over, Schlichting’s result (2.2) indicates that s ∼ ε, while (2.3) requires that Wd ∼ ε−1.

Consequently, Ŝ, ŝ and Ŵd are all O(1) quantities. Note that S−1 is O(ε−1); however,
it always appears in (5.25) and (5.26) as the product S−1s2, which is O(ε). Thus the
effect of gravity, as introduced through S, is an O(ε) effect in our asymptotic theory.
Substituting (5.27) into (5.25), evaluating the integral, substituting ŝ1 = ŝ10+εŝ11+O(ε2)
and equating like powers of ε yields

ŝ10 = 8.25, ŝ11 = −91.6 + 24.1Ŝ−1. (5.28)

Substituting (5.27) and (5.28) into (5.26), evaluating the integral, squaring the result
and retaining O(ε) terms yields

2.73

Ŵd

2
= 1 + ε(15.2 + 0.323Ŝ−1). (5.29)
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Figure 8. Observed dependence of dimensionless fluid pipe height H/(aRe) on dynamic Weber num-
ber Wd = ρaV 2/∆σ for Ivory ( e) and Tide (4) surfactants. Characteristic error bars are shown. The
solid line represents the predictions for the fluid pipe height (for the mean S = νV/(ga2) = 0.062)
based on the complete theory ((5.25) and (5.26)). The dot-dashed line represents the O(1) asymp-
totic short-pipe prediction for the dimensionless pipe height, (5.30). The O(ε) asymptotic prediction,
(5.31), is represented by the dashed line.

The leading-order terms of (5.29) imply W 2
d ε

2 = Ŵd

2
= 2.73 + O(ε), or

H

aRe
=

2.73

W 2
d

. (5.30)

The form of the leading-order result (5.30) is consistent with our original scaling (2.3),
in which gravitational effects were neglected. Equation (5.30) indicates that ε and

Ŝ−1 may be replaced by
√

2.73/Wd and
√

2.73/(WdS), respectively, in the O(ε) term
of (5.29) while still retaining O(ε) accuracy. Making these replacements and suitable
rearrangement yields

H

aRe
=

2.73

W 2
d

(
1 +

25.1

Wd

+
0.879

SW 2
d

)−1

. (5.31)

Equation (5.31) contains an O(ε) correction to (5.30) which includes the first effects
of gravity.

The O(1) and O(ε) asymptotic approximations, respectively (5.30) and (5.31), are
plotted in figure 8 along with the full theoretical predictions (5.25) and (5.26). We note
that the asymptotic solutions are expected to be valid only for ε � 1 and Wd � 1.
While the asymptotic solutions are thus not strictly valid over the entire experimental
parameter range, the O(ε) solution (5.31) provides a reasonable approximation to the
full theory.

6. Discussion and conclusions
By integrating the existing theoretical model of a free-falling jet with a suitably

modified model of entry flow into a rigid pipe, we have deduced a theoretical
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description of the fluid pipe. An accompanying experimental study indicates that the
pipe height depends on the governing parameters in a manner prescribed by our
theoretical model. We have also presented new experimental measurements of jet
profiles and wavelengths of capillary waves excited in the region adjoining a clean
reservoir.

The fluid pipe is an example of a gravity-driven flow in which surfactants serve to
suppress surface motions. Such is also the case in the draining rigid soap film (Mysels,
Shinoda & Frankel 1959); however, the flow within soap films is dominated by the
influence of fluid viscosity. The ability of surfactant to suppress surface motions in
compactional flows is also evident when wind blows over a puddle: the wind stress
causes surfactant to accumulate at the leeward side of the puddle, where a quiescent
surface region void of waves may be observed. Impurities also accumulate in the
vicinity of stagnation points upstream of obstacles in rivers, giving rise to a locally
stagnant surface region. The collision of the incoming flow with the surfactant-laden
stagnant region results in the margins of the latter being marked by a pronounced
surface deflection known as the Reynolds ridge (McCutchen 1970; Harper & Dixon
1974; Scott 1982; Jensen 1998). While an axisymmetric Reynolds ridge may well exist
at the top of the fluid pipe, it is not readily discernible owing to the presence of the
capillary wave field.

Surfactants may have an important impact on the rate of mass transfer into falling
jets and films as arise, for example, in wetted-wall column absorbers (Emmert &
Pigford 1954; Lynn, Straatemeier & Kramers 1955). Surfactants typically diminish
mass transfer across an interface through their influence on surface chemistry (e.g.
Sada & Himmelblau 1967). Moreover, the rate of gas absorption in falling jets
and films is known to be enhanced by the presence of capillary waves (Nieuwoudt
& Crause 1999); consequently, surfactants may further diminish absorption rates
through suppressing capillary waves. Finally, the addition of a soluble surfactant to
a falling film may render the film unstable to Marangoni convection, thus enhancing
mass transfer across its surface (Ji & Setterwall 1994, 1995). Evidently, the influence of
surfactant on mass transfer across falling films and jets depends explicitly on the type
and concentration of surfactant. We have developed a detailed theoretical description
of the dynamic influence of surfactants on fluid jets impinging on a reservoir saturated
with an insoluble surfactant.

It is a noteworthy experimental observation that only surfactants with an insoluble
or sparingly soluble component (in particular, the commercial detergents Tide and
Ivory) produce fluid pipes with the stagnant surfaces described by our theory. Sur-
factants with higher solubility, such as SDS, give rise to pipe-like structures marked
by convective motions on their surface. Presumably, as the surfactant desorbs from
the surface into the bulk, a static balance between viscous and Marangoni stresses
is no longer tenable, and Marangoni convection is prompted on the pipe surface.
Similar unsteady pipe structures arise when a water jet impinges on a reservoir of
alcohol. In this case, while a Marangoni stress between reservoir and jet is again
established, the dynamics are more complicated and some combination of diffusion
and evaporation of alcohol evidently precludes the possibility of a stagnant fluid
pipe.

Finally, for the sake of completeness, in Appendix C we present a theoretical
description of the two-dimensional analogue of the fluid pipe, which may arise when
a fluid sheet impinges on a contaminated reservoir and take the form of a stagnant
planar region adjoining the reservoir. The scaling of the planar pipe is identical to
(2.3) when the cylindrical pipe radius a is replaced by the planar pipe half-width a.
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Appendix A. Capillary waves
The capillary waves supported by a falling pure water jet are described as infinites-

imal axisymmetric disturbances

ξ = ξ̂(z) ei(kz−ωt) (A 1)

on the base radial profile a(z), so that the instantaneous radial profile is a(z, t) =
a(z) + ξ(z, t). Rayleigh (1879, 1892) derived the dispersion relation for waves on a

cylindrical inviscid jet in the absence of gravity (a(z) = a0, ξ̂ = constant):

ω2

k2
=

σ0

ρa0

I1(α)

I0(α)

(
α− 1

α

)
, α = |k|a0, (A 2)

where I0 and I1 are modified Bessel functions of the first kind of order zero and one,
respectively. The analogous relation for the case of a viscous jet was also derived by
Rayleigh (1892). With parameters relevant to our experimental study, the capillary
wavelengths predicted by the inviscid and viscous theories are indistinguishable;
hence, the effects of viscosity may again be safely neglected.

To apply Rayleigh’s theory to a vertical water jet, we note that the jet profile varies
slowly in z. In the jet frame of reference, the amplitude of the capillary waves is
proportional to ei(kz−ωt), where ω > 0. Since the waves are stationary in the lab frame,
their phase speed must be equal and opposite to the local jet speed, U = −ω/k.
Setting U2(z) = ω2/k2 and replacing a0 with the local jet radius a(z) in (A 2) gives

U2 =
ω2

k2
=

σ

ρa

I1(α)

I0(α)

(
α− 1

α

)
, (A 3)

where α = |k|a(z). A similar result was derived by Anno (1977). In the parameter
regime considered experimentally, the jet profiles are described within experimental
error by (4.5) (figure 6). Therefore, for the sake of simplicity, (4.5), rather than (4.3)
and (4.4), is used to calculate the velocity and radial profiles for our base flows.
Substituting (4.5) into (A 3) yields

I1(α)

I0(α)

(
α− 1

α

)
= W0(Π + 1)3/4. (A 4)

The predicted dependence of the wavelength λ on height z is thus

λ

a0

=
2πa/a0

α(W0, Π)
=

2π(Π + 1)−1/4

α(W0, Π)
. (A 5)

Figure 9 indicates that the observed capillary wavelengths are reasonably well-
described, but systematically greater than, those predicted by (A 4) and (A 5). The
discrepancy probably results from finite-amplitude effects on the wave field.
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Figure 9. Comparison of observed and theoretically predicted dimensionless capillary wavelengths
λ/a0. The theoretical wavelength is found by substituting the local values of Π = 2g(z+ z0)/U2

0 and
W0 = ρa0U

2
0/σ0 into (A 4) and (A 5). A characteristic error bar is shown.

Appendix B
The functions F(s,S) and G(s,S) arising in § 5.3 and § 5.4 are given by

F(s,S) =
1421637

9152
+

210226317

777920
s− 10317503

14144
s2 +

4782127

9724
s3 − 2751

22
s4 +

1706

165
s5

+
S−1s2

91520

(
166845− 191077607

85
s+

326905159

85
s2 − 664814962

255
s3

+
206471897

255
s4 − 9697992

85
s5 +

21008

3
s6 − 832

3
s7
)

+
S−2s4

66560

(
−9261 +

32343969

935
s− 44432801

935
s2 +

1752492

55
s3

− 31516957

2805
s4 +

114891

55
s5 − 183977

935
s6 +

167392

19635
s7
)
, (B 1)

G(s,S) = 1260− 3255

2
s+ 420s2 +S−1s2

(
168− 749

4
s+

403

4
s2 − 167

6
s3 + 3s4

)

+
S−2s4

4

(
−7 +

77

8
s− 71

12
s2 +

19

10
s3 − 121

420
s4 +

11

840
s5
)
. (B 2)

Appendix C. Planar pipes
The theoretical description of flow in a planar fluid pipe (or rectangular duct)

closely follows that in the cylindrical geometry. The physical picture is the same as
shown in figure 3: a boundary layer of thickness δ(z) grows along the sides of the
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planar pipe. We denote by v′ the velocity component in the y-direction, and by y′ the
cross-channel coordinate, so that y′ = ±a denote the pipe boundaries.

The flow in the boundary layer is governed by the continuity and boundary layer
axial momentum equations:

∂u′

∂z′
+
∂v′

∂y′
= 0, u′

∂u′

∂z′
+ v′

∂u′

∂y′
= −1

ρ

dp′

dz′
+ ν

∂2u′

∂y′2
. (C 1)

The flow vanishes at the pipe walls. The normal stress balance assumes the form
p′(z′) = pa. The boundary conditions (5.13) and (5.15) are still valid with r′ replaced
by y′.

We define the dimensionless variables s, z and u as in (5.8), and y = y′/a. From
(C 1) and the boundary conditions listed above, we derive an equation analogous to
the integral equation (5.10),

aRe

H

ds

dz

d

ds

(
1

2

∫ 1

0

u3 dy −
∫ 1

0

u2 dy

)
= −

∫ 1

0

(
∂u

∂y

)2

dy − ∂u

∂y

∣∣∣∣
y=1

. (C 2)

The dimensionless constant volume flux condition for the planar flow is∫ 1

0

u dy = 1. (C 3)

The flow profile in the boundary layer is approximated by (5.17), with η = (1−y)/s.
To resolve the unknowns An(z), s(z) and U(z), we impose the integral relation (C 2),
the volume flux condition (C 3) and the boundary conditions (5.4) and (5.16), with r
replaced by y. At y = 1 − s, we impose the same degree of smoothness on u as in
the cylindrical case. The approximate profile still has the form (5.18), but U(z) is now
given by

U(z) =
240−S−1s3

60(4− s) . (C 4)

The variation of the scaled boundary layer thickness s is governed by

H

aRe

dz

ds
=

504 sFp(s,S)

Gp(s,S)

120−S−1s2(6− s)
(4− s)2

, (C 5)

where

Fp(s,S) =
1

2970

(
48355

364
+

103683

728
s− 139s2

)
+
S−1s2

64864800
(34050− 232969s+ 143541s2 − 4550s3)

+
S−2s4

518918400
(−20790 + 36033s− 16496s2 + 1043s3), (C 6)

Gp(s,S) = 5760− 5040s+ 12S−1s2(64− 34s+ 7s2)−S−2s4(8− 5s+ s2). (C 7)

The variation of the scaled surface tension σ = σ′/σ0 in terms of s is deduced from
(5.13) and (C 5),

dσ

ds
= −W0

Fp(s,S)

Gp(s,S)

84(60 +S−1s2(3− s))(120−S−1s2(6− s))
(4− s)3

. (C 8)
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Integrating (C 5) and (C 8) from s = 0 to s = s1 and imposing the same boundary
conditions as in the cylindrical case yields

H

aRe
=

∫ s1

0

504 sFp(s,S)

Gp(s,S)

120−S−1s2(6− s)
(4− s)2

ds, (C 9)

1

Wd

=

∫ s1

0

Fp(s,S)

Gp(s,S)

84(60 +S−1s2(3− s))(120−S−1s2(6− s))
(4− s)3

ds. (C 10)

The numerical procedure to find the scaled pipe height H/(aRe) from (C 9) and (C 10)
follows as previously.

A simple relation for short pipes (ε � 1) is found by proceeding as for the case
of cylindrical pipes. Equation (5.27) and the expansion ŝ1 = ŝ10 + εŝ11 + O(ε2) are
substituted into (C 9) and (C 10), the integrals are computed and ŝ10, ŝ11 are found
and substituted back into the results. Retaining only O(ε0) terms in this calculation
yields (5.30). Retaining O(ε) terms throughout the calculation yields the dependence
of planar pipe height on the governing parameters:

H

aRe
=

2.73

W 2
d

(
1 +

14.5

Wd

+
0.879

SW 2
d

)−1

. (C 11)
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régime uniforme. Comptes Rendus 113, 9–15, 49–51.

Brun, R. F. & Lienhard, J. H. 1968 Behavior of free laminar jets leaving Poiseuille tubes. ASME
Paper 68-FE-44.

Campbell, W. D. & Slattery, J. C. 1963 Flow in the entrance of a tube. Trans. ASME : J. Basic
Engng 33, 41–46.

Clarke, N. S. 1968 Two-dimensional flow under gravity in a jet of viscous liquid. J. Fluid Mech.
31, 481–500.

Clarke, N. S. 1969 The asymptotic effects of surface tension and viscosity on an axially-symmetric
free jet of liquid under gravity. Q. J. Mech. Appl. Maths 22, 247–256.

Cullen, E. J. & Davidson, J. F. 1957 Absorption of gases in liquid jets. Trans. Faraday Soc. 53,
113–121.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Duda, J. L. & Vrentas, J. S. 1967 Fluid mechanics of laminar liquid jets. Chem. Engng Sci. 22,
855–869.

Emmert, R. E. & Pigford, R. L. 1954 A study of gas absorption in falling liquid films. Chem.
Engng Prog. 50, 87–93.

Fargie, D. & Martin, B. W. 1971 Developing laminar flow in a pipe of circular cross-section. Proc.
R. Soc. Lond. A 321, 461–476.

Friedmann, M., Gillis, J. & Liron, N. 1968 Laminar flow in a pipe at low and moderate Reynolds
numbers. Appl. Sci. Res. 19, 426–438.

Goldstein, S. 1938 Modern Developments in Fluid Dynamics I. Clarendon Press.
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